
How to Pick an RTOS
by Ralph Moore
smx Architect

Simple RTOS Kernels
There are many simple RTOS kernels on the market. The presumed advantage of these
kernels is that they are easier to learn than full kernels. The downside to this is that
missing capabilities that are needed by an application end up in the green application
code rather than in the proven commercial kernel code. The less you have to design,
code, and debug, the more likely you are to meet project goals. The cost of reinventing
the wheel, so to speak, is likely to exceed the difference in cost between a full kernel and
a simple kernel — even if the simple kernel is free.

It may not be obvious what features your application needs. For this reason, it is
recommended that you download evaluation kits of simple and full kernels and try
structuring your application for each. A little homework up front may save a great deal of
unnecessary development work later.

Big OSs
At the other end of the spectrum are big operating systems, such as Linux and Windows,
which are much too complex for typical embedded systems. Unlike RTOSs specifically
designed for embedded systems, these OSs have functionality that is not needed for them.
Although big pieces of unneeded code can be omitted, a great deal cannot. Hence you are
left in the final product with much more code than you actually need. The main
downsides to this are: (1) higher bill of materials (BOM) cost — more memory, faster
processor, etc., (2) much slower boot time, and (3) much more to learn and deal with.

A good RTOS comes with all of the middleware and drivers that most embedded systems
need. Of course, OSs like Linux and Windows have all of the functionality that a product
could possibly need, now or in the future. From a marketing perspective, that may seem
to present less future competitive risk. However these OSs also come with a lot of excess
baggage that drive up BOM costs and increase support cost and liability risks. So which
should you pick — protection against potential escalating requirements or the best fit to
today’s requirements? Discussion with Marketing may be helpful — maybe they do not
see the need for, nor want, limitless features, or maybe they do. Someone needs to make
realistic tradeoffs. You and they should not make critical decisions in the dark.

If your company’s competitors have wisely picked RTOSs that fit product requirements
well, they will be able to establish a price point, which may be marginal for your
company, but good for them. Hence the fruit of your work may be a marginally profitable
product that does not contribute to your company’s success and thus is of little interest to
Upper Management. Here, massive functionality does not necessarily provide the best
solution.

How to Pick an RTOS.doc 1 2/3/2012

Copyright © 2012 by Micro Digital, Inc. All rights reserved.

Of course, if the product you are developing is very expensive relative to its electronics
cost, then a big OS is unlikely to be a significant BOM cost burden. However, it still may
not be the best solution if its complexity drives up support or liability costs. Linux, for
example usually requires adding an OS specialist to the support team to keep up with
revisions, and Windows does not provide full source code. Using something that you do
not fully understand is risky. If source code is not available or it is too complex to
understand in one lifetime, there could be trouble down the road.

Time to Market
The concern about time to market is based upon the assumption that for a given product
there is a market window, which starts when the first competitor gets its product to
market and which ends a fixed number of months or years later. In the simplest model it
is assumed that a certain average number of units will be sold per month during this
window and that none will be sold when the window closes. Hence time lost at the start
of the window results in lost sales that cannot be made up. Worse, it may also result in
less market share, which means fewer sales per month after the product does get to
market. Thus a schedule overrun may cost your company many times the increase in
development cost that you see.

Of course, the actual situation is much more complex than this simple model, and you
should consult with your Marketing Department to determine the true cost of missed time
to market for your project. Do this before picking an RTOS and other software
development tools so you can make proper cost vs. risk tradeoffs. The investment that
can be justified for good commercial software and tools may surprise you.

BSPs and Drivers
This is another area of great potential labor savings for you. Of course, the big OSs are
likely to have everything you need. Simple kernels tend to be quite bare, leaving the
heavy lifting to the user. Naturally, the more code that is already written and debugged,
the easier your job will be. This is especially true for low-level code, some of which may
need to be written in assembly language and all of which requires intimate hardware
knowledge. Many SoCs are ornery little critters, no doubt “written” by engineers like you
who do not have adequate time to perfect their work. Hence, this is an area to check
carefully for all prospective RTOSs. Look for RTOSs that already have your processor
supported. Ideally the RTOS vendor will have a ready-to-run evaluation kit that you can
download and test.

Running evaluation kits is also a good way to pick a processor. Hopefully the RTOS
vendor has time measurement tools that will enable you to measure and compare critical
times for your application. Check that the RTOS vendor has already written the difficult
drivers — e.g. Ethernet and USB. Drivers such as UART and I2C are easier to write and
probably will be customized to the application, anyway. Also check into what BSP
functions and subroutines are offered with the RTOS that may make writing small drivers
easier.

How to Pick an RTOS.doc 2 2/3/2012

Copyright © 2012 by Micro Digital, Inc. All rights reserved.

API Usability
As previously noted, some APIs are too sparse and some are too complex. You probably
need something in between. You should consider these questions when evaluating an
RTOS API:

• Do you feel comfortable with it? Little things like naming, return values, and the
number of arguments do matter.

• Do the manuals document operations well?
• Do they document side-effects well? (If not, you could be in for some surprises.)
• Are there good examples to follow?
• What safety and debug features are built into the API? — i.e. does the API help

you to avoid mistakes and to find those that do creep in?

You should also consider the completeness of the API. Does it have everything you need
or that you are likely to need? It is especially useful to look into what happens when
things do not go as expected. The interplay of the RTOS with the development tools you
have selected is particularly important. Try introducing some bugs and see how easily
you can find them. Here again, doing your homework up front may pay big dividends
later.

Middleware
In 1975, when the embedded systems industry was in its infancy, a typical embedded
device had 8 KB of code, 1-2 KB of RAM, and a handful of switches and LEDs for the
operator interface. There was no “middleware.” Today, that picture has radically
changed, and now middleware is a dominant part of the RTOS selection process. For
embedded devices, there are four main categories: networking, file system, USB, and
user interface.

Networking: A major industry trend is to network all embedded devices. This is useful
to download software upgrades, for remote diagnosis, and to upload data and operational
logs. The goal is to reduce technician visits. The foundation for networking is the TCP/IP
stack offered with the RTOS. These days, it should be a dual IPv4/v6 stack in order to
work with either type of network. Some stacks are very large and slow and were not
really intended for embedded systems. For embedded devices a dual stack should fit in
about 75 KB of ROM and be able to give reasonable performance with about 20 KB of
RAM. (Of course, as other protocols are added these footprints may go up.) RAM usage
tends to be a sticking point because most SoCs have small on-chip RAM, yet TCP/IP
stacks typically need a basic 12 KB plus about 8 KB per active session. Using off-chip
RAM may not be desirable because performance can go way down and it adds to BOM
cost.

A plethora of protocols are available for TCP/IP. Most popular among these for
embedded devices are web servers, also known as HTTP servers. A web server permits
accessing an embedded device via a standard browser, such as Internet Explorer, in order
to change settings or view device operation. Beware, however, that modern browsers are

How to Pick an RTOS.doc 3 2/3/2012

Copyright © 2012 by Micro Digital, Inc. All rights reserved.

designed to operate with web servers running on powerful processors having large
memories. They, for example, attempt to initiate multiple sessions for better performance.
A small SoC-based web server, with minimal RAM, cannot do this and thus performance
may suffer unless web pages are kept simple.

Other useful protocols are HTTP client, which allows accessing a home-base website for
configuration parameters or to report problems, SNMP to manage embedded devices,
DHCP to obtain temporary IP addresses, FTP for file transfers, and many more that may
or may not be useful for your application. It is important to pick an RTOS that has a
broad offering of TCP/IP protocols because of the difficulty to decide what to use.
Customers often order additional protocols long after their projects have started.

When an embedded device becomes network accessible, network security becomes
important, even if the device is on a private network. Imagine if a competitor’s spy could
access secret information, or if a hacker could cause damage to your device or to your
customer’s equipment, product, or reputation. SSL (Secure Socket Layer) is extensively
used for financial transactions and is increasingly being used in embedded systems.
Through the use of “certificates,” your device is able to verify that you are you, and you
are able to verify that it is it, after which you are able to exchange safely-encrypted
information back and forth.

Many SSL packages on the market are too large (e.g. 500 to 1000 KB) for small SoC
devices. However, some vendors offer SSL packages in the 50-75 KB range, which are
obviously much more suitable. Another consideration is performance. Encryption or
decryption is basically division of an entire message by a 2K-bit or 4K-bit divisor. This is
a bit too much for a 70 MHz processor and message throughput will not be good. Some
SoCs offer encryption hardware to ameliorate this problem. Even if you initially do not
plan to use SSL, it is advisable to make sure that your hardware and RTOS selection will
allow adopting it in the future without great difficulty. Trying SSL out might be an eye-
opener.

A final major embedded networking trend is toward wireless devices. These can greatly
reduce installation costs, avoid bringing a connector out of the package, and are much
more convenient for servicing via a laptop, pad, or cell phone. (One can access a piece of
equipment from a safe and convenient distance.) IEEE 802.11, also known as WiFi, is the
leading protocol for this purpose. Some RTOSs offer it; most do not. The WiFi stack
should support both peer to peer and access point communication. Security is especially
important for wireless communication. WPA2 (WiFi Protected Access) is needed for real
security and should be available with the WiFi stack.

File Systems: Some sort of file system is needed by most embedded devices. There are
many alternatives: (1) FAT file system used to read and write popular media such as SD
cards, USB thumb drives, CompactFlash, and others. Generally speaking, the FAT file
system must be compatible with Windows so information can be transferred between a
PC or laptop and the embedded device. FAT file systems generally are not power-fail
safe, except when extended with non-standard techniques such as journaling. (2) Flash

How to Pick an RTOS.doc 4 2/3/2012

Copyright © 2012 by Micro Digital, Inc. All rights reserved.

file system for use with NAND, NOR, or serial flash chips. This kind of file system
handles the complexities of dealing with flash devices and offers a low-cost solution to
storage of large amounts of data within a device. A good flash file system is power-fail
safe and uses only a very small amount of RAM to handle very large flash devices.
NAND flash is normally used when there is a large storage requirement. SLC (Single
Level Cell) NAND devices are best for embedded systems; MLC (Multi-Level Cell)
devices are too sensitive — cells can be disturbed by reads and writes to neighboring
cells. MLC devices require large ECCs (Error Correction Codes) to function reliably. To
be practical for SoC devices, ECC hardware assistance is needed for MLC chips, but not
for SLC chips. (3) Loggers. Some RTOS vendors offer very simple, low-footprint flash
loggers that are useful for things like down-hole instruments, where the device is
incommunicado while gathering data, but data can be dumped after it returns.

USB: USB has replaced serial in the commercial world and is rapidly doing the same in
the embedded world. It comes in three flavors:

(1) A USB host stack enables connecting to your embedded device a USB device such as
a Thumb drive, serial device, audio device, HID (Human Interface Device), printer,
modem, hub, WiFi, etc. To do so, the appropriate class driver runs on top of the host
stack. A major prospect for your product can unexpectedly need to connect to an unusual
device such as a USB modem. This is no problem if your RTOS vendor has the needed
class driver.

(2) A USB device stack allows connecting your device to a PC or a laptop. Function
drivers running on the device stack communicate with class drivers running on the PC or
laptop. A very useful function driver is the serial driver. When a device with it is plugged
into a PC USB port, Windows recognizes the device as a serial device and assigns a
COM port to it. Thereafter the device can be accessed like a serial device through that
port — by, for example, using a terminal emulator. Other function drivers include
Ethernet over USB, mass storage, media transfer, multi-port serial, and video. Ethernet
over USB (RNDIS) provides an interesting capability. With it, a web server in a device
can be accessed via a browser on a PC as though the device were connected to a LAN.
So, for example, a technician, with a laptop, can plug it into the embedded device and
access it the same as he would through a network.

(3) An OTG (On The Go) stack can look like either a host or a device. OTG allows
switching the role of the peer device (which is also OTG). This is useful for things like
digital cameras, but most embedded devices need both interfaces simultaneously and thus
need two connectors, two controllers, and both the host and the device stacks.1

 It is important to learn about the vast array of possibilities that USB offers2, then to make
sure that the RTOS you are considering has them covered. A broad assortment of class
drivers and function drivers is important because a device’s USB requirements are likely
to change with time.

1 For more discussion see: “When to Use USB OTG” by Yingbo Hu.
2 For ideas see: “Ways to Use USB in Embedded Systems” by Yingbo Hu and Ralph Moore.

How to Pick an RTOS.doc 5 2/3/2012

Copyright © 2012 by Micro Digital, Inc. All rights reserved.

http://www.smxrtos.com/articles/usb_art/whenotg.htm
http://www.smxrtos.com/articles/usb_art/waysusb.htm

GUI (Graphical User Interface): Many embedded devices just need some simple text
output and therefore no GUI is required. Good RTOSs provide console functions for
sending messages and text to a small display. Devices that have 1/4 VGA and larger
displays can benefit from a GUI. A good GUI allows easily creating attractive interfaces
using window builder, font capture, and image conversion tools. It provides black and
white, gray scale, or color, touch screen, widgets, and more. The RTOS vendor should
offer a range of GUIs from minimal to elegant. However, expecting smart-phone
equivalence is not realistic for most embedded devices. (Android® requires 100’s of
megabytes of memory.) Nonetheless, a good GUI can come close — it is possible to get
very nice screens with a small-footprint GUI that has been designed for embedded
systems. As with other RTOS features, it is good idea to try evaluation kits to see which
achieves what you need with the least effort on your part.

A final point on middleware is that it is best if the RTOS vendor developed the
middleware, itself, so it will have the in-house expertise to provide you with good
support.

Tool Integration
An often-overlooked consideration for picking an RTOS is its quality of tool integration.
Good integration with quality development tools allows starting quickly and being more
productive. The quality of tool integration can be determined by downloading an RTOS
evaluation kit and seeing how easy or difficult it is to use. Most RTOS vendors offer
kernel-aware add-ons for tool vendor debuggers. These typically provide event timelines
that show when tasks and ISRs started and stopped and why they did so. They also may
provide stack and processor usage graphs and permit inspecting RTOS control blocks,
event buffers, error buffers and other RTOS objects. The more system-level information
you have available, the easier it is to track down system-level problems such as task
starvation, prioritization problems, priority inversions, stack overflow, etc. Some RTOS
vendors have extended their kernel-awareness tools to their middleware, which is very
helpful in dealing with networking, file, and USB problems. Good error reporting by the
kernel (e.g. OUT OF TCBS) is also a major help during debugging. Stack overflow and
high watermark reporting are crucial to saving one’s sanity.

Other Factors
Other factors are also important to get a quick start. It helps if the release is pre-
configured to run on a standard evaluation or development board for your processor; this
permits starting to use the software immediately and to build confidence that everything
works as advertised. Low-level BSP notes are a big help, not only for understanding how
the BSP code works on the evaluation board, but also for migrating the BSP (and all
other software) to the final production board. Good BSP notes explain configuration
settings and point to the locations of important constants, files, etc.

Good BSP code backed up with strong support has become very important because SoCs
are now so complex. Typical data sheets are well over 1000 pages of excruciating detail
How to Pick an RTOS.doc 6 2/3/2012

Copyright © 2012 by Micro Digital, Inc. All rights reserved.

that is often incorrect and incomplete. In order to produce a reliable BSP and drivers, the
RTOS vendor must blaze a path through the SoC documentation. Like an early pioneer, it
is good for you to have a path to follow. Help in the form of notes and responsive
technical support, can keep you from going off the path into the weeds. Assess the
support you receive during evaluation as an indicator of support you will receive after
you buy.

Conclusions
Picking a simple RTOS kernel because it easy to learn is not a good solution for most
projects, because needed capabilities that are not in the kernel end up in the application as
green code rather than proven code. Going to the other extreme of picking a complex OS
because it is future-proof against anything Marketing may require, is also not a good
solution because it burdens the project with excessive complexity and cost. As a
consequence, the very success and on-time delivery of the project is jeopardized for
future eventualities that may never happen. It is better to talk with Marketing and make
realistic decisions up front. (If this doesn’t work, you may need to enlist the help of the
businessman who runs your company.) Finally, we have reviewed the many
considerations that go into creating a modern RTOS that is good for now and for the
future. Such an RTOS is properly viewed as an important member of your team, worthy
of lavish salary and benefits.

Ralph Moore ralphm@smxrtos.com
Micro Digital, Inc.
www.smxrtos.com

How to Pick an RTOS.doc 7 2/3/2012

Copyright © 2012 by Micro Digital, Inc. All rights reserved.

mailto:ralphm@smxrtos.com
http://www.smxrtos.com/

	Simple RTOS Kernels
	Big OSs
	Time to Market
	BSPs and Drivers
	API Usability
	Middleware
	Tool Integration
	Other Factors
	Conclusions

